
IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51233 152

Performance Testing and Monitoring SQL

Queries for Rebuild or Reorganize Operations

Mr. Sudhakar Panigrahy
1
, Mr. Pragnyaban Mishra

2
, Mr. Murali Krishna Senapaty

3

Dept of CSE, Gandhi Institute of Engineering & Technology, Gunupur, Rayagada, India
1, 2, 3

Abstract: A database system must be able to respond to requests for information from the user—i.e. process queries.

Obtaining the desired information from a database system in a predictable and reliable fashion is Query Processing. To

extract these results in a timely manner is possible with the technique of Query Optimization. For effective query

processing the data must not be much fragmented. In this paper we focussed on the poor performance of query when

the date fragmentation percentage is more and we have analysed how the fragmentation can be reduced using rebuild

and re-organize techniques. In the last section, we have taken a sample data for query processing before rebuild and

after that to have a comparative analysis.

Keywords: Indexing, Fragmentation, rebuild, re-organize.

1. INTRODUCTION

1.1 Index :

Index is used to speed up the query retrieval process.

Index uses lookup table the search engine of the database

uses to improve the performance of select statement of

SQL query. As index stores data in sorted order hence it is

also useful in order by clause. However index reduces the

DML (Data Manipulation Language) operations (Insert,

Update and Delete operations). Hence index is avoided in

following situations:

 If number of rows in table is less(less than 1000).

 If the column not used in where clause of SQL

statement.

 The number of distinct values of index column is

less(Like the gender column contains M/F).

 The column contains more number of NULL values.

 If the column that is frequently updated.

Use of indexes is one of the best ways to improve

performance of database application. The index uses the

data structure B-Tree for indexes. The searching operation

is first as B Tree uses logarithmic time for look up,

insertion and deletion. The correct use of index requires

careful analysis, benchmarking and testing. SQL query

tuning is used to identify the useful of index[2].

The performance of the query is very important when the

database size if large so there exist so many techniques for

tuning the query by which the performance of the query

can be improved.[1]

Now it is important to know, if we are looking for a

specific value how it retrieves other values. Index also

stores pointer to the corresponding rows in the table.

Hence it retrieves data as per specific column value used

where clause.

1.2 FRAGMENTATION:

Storing of data non-contiguously on a disk is called as

fragmentation.

We can classify fragmentation into two types:

Types of Fragmentation

 Internal Fragmentation: When records are stored

non-consecutively inside the page, then it is called

internal fragmentation. Internal fragmentation will

occur if there is unused space between records in a

page. This fragmentation occurs sue to the process of

data modifications (INSERT, UPDATE, and DELETE

statements) that are made against the table many times

and also to the indexes defined on the table. When the

modifications are not equally distributed among the

rows of the table and indexes then the fullness of each

page can vary. Due to these unused spaces it causes

poor cache utilization and more I/O, which finally

leads to poor query performance.

 External Fragmentation: When the extents of a table

are not physically stored contiguously on disk,

switching from one extent to another causes higher

disk rotations, and this is called Extent Fragmentation.

 Logical Fragmentation: Index pages also maintain a

logical order of pages inside the extent. Every index

page is linked with previous and next page in the

logical order of column data. However, because of

Page Split, the pages turn into out-of-order pages. An

out-of-order page is a page for which the next physical

page allocated to the index is not the page pointed to

by the next-page pointer in the current leaf page. This

is called Logical Fragmentation.

Advantages of Fragmentation

 Usage: Generally, applications work with views more

than entire relations. That is why, for data distribution,

it seems appropriate to work with subsets of relation as

the unit of distribution.

 Efficiency: Data is stored close to where it is most

frequently used. The data that is not needed by local

applications is not needed to store locally.

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51233 153

 Parallelism: With the fragments as the unit of

distribution, a transaction can be divided into several

sub queries that operate on fragments. This allows

concurrency, thereby allowing transactions that can do

so safely to execute in parallel.

Disadvantages of the Fragmentation:

 Performance: The performance of global application

that requires data from several fragments located at

different sites may be slower.

 Integrity: Integrity control may be more difficult if

data and functional dependencies are fragmented and

located at different sites.

2. REORGANIZE AND REBUILD INDEXES

The Database Engine maintains indexes whenever insert,

update, or delete operations are made to the underlying

data. Over time these modifications causes the information

in the index to become scattered in the database.

Fragmentation exists when indexes have pages in which

the logical ordering, based on the key value, does not

match the physical ordering inside the data file. More

fragmented indexes can degrade query performance and

cause your application to respond slowly[5].

We can remedy index fragmentation by reorganizing or

rebuilding an index. For partitioned indexes built on a

partition scheme, you can use either of these methods on a

complete index or a single partition of an index.

2.1 Rebuild: Rebuilding an index drops and re-creates

the index. This removes fragmentation, reclaims disk

space by compacting the pages based on the specified or

existing fill factor setting, and then reorders the index

rows in contiguous pages. When ALL is specified, all

indexes on the table are dropped and rebuilt in a single

transaction.

2.2 Reorganize: Reorganizing an index uses minimal

system resources. It defragments the leaf level of clustered

and non-clustered indexes on tables and views by

physically reordering the leaf-level pages to match the

logical, left to right order of the leaf nodes. Reorganizing

also minimizes the index pages. The Compaction is also

based on the existing fill factor value.

3. EXPERIENTIAL SETUP

3.1 DETECTING FRAGMENTATION

The first step in deciding which defragmentation method

to use is to analyse the index to determine the degree of

fragmentation. By using the system

function sys.dm_db_index_physical_stats, we can detect

fragmentation in a specific index, all indexes on a table or

indexed view, all indexes in a database, or all indexes in

all databases [4].

Query-1: The following query is used to detect the fragmentation exist in all indices of specific database

SELECT OBJECT_NAME(OBJECT_ID), index_id,index_type_desc,index_level,avg_fragmentation_in_percent,avg_

page_space_used_in_percent,page_count FROM sys.dm_db_index_physical_stats (DB_ID(N'MySms'),

NULL, NULL, NULL , 'SAMPLED') ORDER BY avg_fragmentation_in_percent DESC

Output

Fragmentation Before rebuild:

(Figure-3.1)

https://msdn.microsoft.com/en-in/library/ms188917.aspx

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51233 154

From the above output it is observed that the fragmentation exist in many indices of the database.

TABLE-3.1

Column Description

avg_fragmentation_in_percent The percent of logical fragmentation (out-of-order pages in the index).

fragment_count The number of fragments (physically consecutive leaf pages) in the index.

avg_fragment_size_in_pages Average number of pages in one fragment in an index.

3.2 Constructing complex query:

For measuring the performance of the query we used following tables:

1. smsStudent(no. Of records 15000),

2. smsAttendance_Master(no. Of records 118023),

3. smsAttendance_Details(no. Of records 6504012),

4. Proctor_Student_Master(no. Of records 1723),

5. Proctor_Student_Details(no of records 65230),

6. smsEmployee(no.of records 792)

From the above tables is has been seen that the larger tables are: smsAttendance_Master, smsAttendance_Details

Query-2: The query is used to find the attendance percentage of the students in specified date:

select smsStudent.vcRoll_No AS 'Roll No',smsStudent.vcStudent_Name as Name,smsStudent.vcStudent_Mobile_No

as 'Student Mobile No',

vcFathers_No as 'Fathers Mobile No',smsEmployee.vcEmp_Name as

'Proctor',count(smsAttendance_Master.vcAttendance_No) as 'Tot Classes',

SUM(intpresent) as Presnt,count(smsAttendance_Master.vcAttendance_No)-SUM(intpresent) as Absent ,

cast((cast(SUM(intPresent)*100 as decimal(18,2))/COUNT(smsAttendance_Master.vcAttendance_No))as

decimal(10,2)) as Atte_Per

from

smsStudent,smsAttendance_Master,smsAttendance_Details,Proctor_Student_Master,Proctor_Student_Details,smsEmp

loyee

where smsAttendance_Master.vcAttendance_No=smsAttendance_Details.vcAttendance_No and

smsAttendance_Details.vcRoll_No=smsStudent.vcRoll_No and

Proctor_Student_Master.vcProctor_Student_Code=Proctor_Student_Details.vcProctor_Student_Code and

Proctor_Student_Details.vcStudent_Roll_No=smsStudent.vcRoll_No and

Proctor_Student_Master.vcProctor_Employee_Code=smsEmployee.vcEmp_code and

smsStudent.vcBranch_Id='CSE' AND smsStudent.intSemester=6 and vcSection='A' and

smsStudent.vcStatus='ACTIVE' AND

smsAttendance_Master.vcStatus='ACTIVE' and smsAttendance_Master.dtDtAttendance_Date>='12/13/2016

12:00:00 AM' and

smsAttendance_Master.dtDtAttendance_Date<='12/13/2016 12:00:00 AM'

group by smsStudent.vcRoll_No,smsStudent.vcStudent_Name,smsStudent.vcStudent_Mobile_No,

vcFathers_No, smsEmployee.vcEmp_Name

having count(smsAttendance_Master.vcAttendance_No)-SUM(intpresent)>=1 order by smsStudent.vcRoll_No

Query-3: The query is used to rebuild all indices of the database.

use MySms;// MySms is name of the database

SET NOCOUNT ON;

DECLARE @objectid int;

DECLARE @indexid int;

DECLARE @partitioncount bigint;

DECLARE @schemaname nvarchar(130);

DECLARE @objectname nvarchar(130);

DECLARE @indexname nvarchar(130);

DECLARE @partitionnum bigint;

DECLARE @partitions bigint;

DECLARE @frag float;

DECLARE @command nvarchar(4000);

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51233 155

-- Conditionally select tables and indexes from the sys.dm_db_index_physical_stats function

-- and convert object and index IDs to names.

SELECT

 object_id AS objectid,

 index_id AS indexid,

 partition_number AS partitionnum,

 avg_fragmentation_in_percent AS frag

INTO #work_to_do

FROM sys.dm_db_index_physical_stats (DB_ID(), NULL, NULL , NULL, 'LIMITED')

WHERE avg_fragmentation_in_percent > 10.0 AND index_id > 0;

-- Declare the cursor for the list of partitions to be processed.

DECLARE partitions CURSOR FOR SELECT * FROM #work_to_do;

-- Open the cursor.

OPEN partitions;

-- Loop through the partitions.

WHILE (1=1)

 BEGIN;

 FETCH NEXT

 FROM partitions

 INTO @objectid, @indexid, @partitionnum, @frag;

 IF @@FETCH_STATUS < 0 BREAK;

 SELECT @objectname = QUOTENAME(o.name), @schemaname = QUOTENAME(s.name)

 FROM sys.objects AS o

 JOIN sys.schemas as s ON s.schema_id = o.schema_id

 WHERE o.object_id = @objectid;

 SELECT @indexname = QUOTENAME(name)

 FROM sys.indexes

 WHERE object_id = @objectid AND index_id = @indexid;

 SELECT @partitioncount = count (*)

 FROM sys.partitions

 WHERE object_id = @objectid AND index_id = @indexid;

-- 30 is an arbitrary decision point at which to switch between reorganizing and rebuilding.

 IF @frag < 30.0

 SET @command = N'ALTER INDEX ' + @indexname + N' ON ' + @schemaname + N'.' + @objectname + N'

REORGANIZE';

 IF @frag >= 30.0

 SET @command = N'ALTER INDEX ' + @indexname + N' ON ' + @schemaname + N'.' + @objectname + N'

REBUILD';

 IF @partitioncount > 1

 SET @command = @command + N' PARTITION=' + CAST(@partitionnum AS nvarchar(10));

 EXEC (@command);

 PRINT N'Executed: ' + @command;

 END;

-- Close and deallocate the cursor.

CLOSE partitions;

DEALLOCATE partitions;

-- Drop the temporary table.

DROP TABLE #work_to_do;

GO

Output:

Executed: ALTER INDEX [PK__smsEmplo__99AAB30420C1E124] ON [dbo].[smsEmployee] REBUILD

Executed: ALTER INDEX [IX_smsStudent_Branch] ON [dbo].[smsStudent] REORGANIZE

Executed: ALTER INDEX [IX_smsStudent_Semester] ON [dbo].[smsStudent] REORGANIZE

Executed: ALTER INDEX [IX_smsStudent_Section] ON [dbo].[smsStudent] REBUILD

(Note : All rows of the output are not shown here)

From the study [3] it is noticed that rebuild is not useful when the fragmentation is less than 30%. So the query is

designed to reorganize or rebuild as per the fragmentation percentage as below:

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51233 156

TABLE-3.2

avg_fragmentation_in_percent value Corrective statement

> 5% and < = 30% ALTER INDEX REORGANIZE

> 30% ALTER INDEX REBUILD WITH (ONLINE = ON)*

Fragmentation after rebuild all indices (Execution of the Query-3)

TABLE-3.3

(No column name) index_

id

index_type_desc index_

level

avg_

fragmentation

_in_percent

avg_page_

space_used

_in_percent

page_

count

smsEmployee 1 CLUSTERED

INDEX

0 66.66666667 94.0490981 3

Proctor_Student_Details 7 NONCLUSTERED

INDEX

0 50 93.74845565 12

smsStudent 36 NONCLUSTERED

INDEX

0 45.45454545 97.1258216 11

smsStudent 35 NONCLUSTERED

INDEX

0 35.71428571 99.59494687 14

smsStudent 37 NONCLUSTERED

INDEX

0 27.27272727 91.87951569 11

smsSend_Sms_Master 1 CLUSTERED

INDEX

0 4.301075269 98.38045466 93

smsAttendance_Master 12 NONCLUSTERED

INDEX

0 0.625 99.41423277 160

smsAttendance_Master 1 CLUSTERED

INDEX

0 0.319488818 99.14720781 626

smsDPR_Master 1 CLUSTERED

INDEX

0 0.091911765 98.34676303 1088

smsProctor_Cycle_Plan

_Details

0 HEAP 0 0 94.84609587 76

smsExamSubject_

Registration_Master

1 CLUSTERED

INDEX

0 0 12.96021745 1

smsHolidays 0 HEAP 0 0 1.470224858 1

smsExamSubject_

Registration_Details

0 HEAP 0 0 62.54427971 3

smsStudentRegistration 1 CLUSTERED

INDEX

0 0 13.24437855 1

smsDPRComment_

From_Authorites

0 HEAP 0 0 5.564615765 5

smsSetLeave 1 CLUSTERED

INDEX

0 0 86.75150729 3

Superviser_Faculty _Master 1 CLUSTERED

INDEX

0 0 14.05979738 1

smsSubject_ Registration

_Master

1 CLUSTERED

INDEX

0 0 90.22424018 4

smsExamination_Mark

_Details

0 HEAP 0 0 99.15221151 395

smsSubject_

Registration_Details

0 HEAP 0 0 75.20610329 11

smsExam_Semester_Master 1 CLUSTERED

INDEX

0 0 89.28836175 8

smsAttendance_Details 0 HEAP 0 0 98.7805535 10100

smsBranch 1 CLUSTERED

INDEX

0 0 9.340252039 1

smsExam_Semester_Details 0 HEAP 0 0 95.30226093 68

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51233 157

smsUploadedStudent

Imagedetails

1 CLUSTERED

INDEX

0 0 0.852483321 1

smsUploadedStudent

Imagedetails

1 CLUSTERED

INDEX

0 0 0 0

smsStudentRegistration

Temp

0 HEAP 0 0 94.19570052 40

Proctor_Student_Master 1 CLUSTERED

INDEX

0 0 93.43958488 2

sysdiagrams 1 CLUSTERED

INDEX

0 0 0 0

sysdiagrams 2 NONCLUSTERED

INDEX

0 0 0 0

Proctor_Student_Details 0 HEAP 0 0 78.41057574 29

smsSchedule_Master 1 CLUSTERED

INDEX

0 0 10.05683222 1

smsEdit_Student_

Attendance

1 CLUSTERED

INDEX

0 0 0 0

smsAttendance_Edit

_Master

1 CLUSTERED

INDEX

0 0 88.36916234 5

smsAttendance_Edit

_Details

0 HEAP 0 0 50.86278725 12

smsProblem_Category 1 CLUSTERED

INDEX

0 0 1.890289103 1

smsExamination_Schedule 1 CLUSTERED

INDEX

0 0 8.549542871 1

smsExamination_Mark

_Master

1 CLUSTERED

INDEX

0 0 95.34552755 15

smsDPR_New_User 1 CLUSTERED

INDEX

0 0 77.6933531 4

smsStudent 1 CLUSTERED

INDEX

0 0 97.80305164 191

4. PERFORMANCE MEASUREMENT OF REBUILD OR REORGANIZE OPERATION

Execution plan is as below

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51233 158

4.1 Tools identified to measure the performance:

The following tools are used to trace the performance

result and necessary actions:

4.1.1: Estimated Execution Plan

4.1.2: Client Statistics

4.1.3: Measurement of execution time using query

4.1.1: Estimated Execution Plan:

It displays the execution plan, resources (execution time

and space) of the current query and also it necessary

actions require to improve the performance of the query.

Following is the output of the execution plan after rebuild

or reorganize operations (execution of the query-3)

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51233 159

4.1.2: Client Statistics

The client statistics report displays the performance result

in different trials about Query Profile Statistics, Number

of INSERT, DELETE and UPDATE statements, Rows

affected by INSERT, DELETE, or UPDATE statements,

Number of SELECT statements , Rows returned by

SELECT statements, Number of transactions , Network

Statistics, Number of server roundtrips, TDS packets sent

from client, TDS packets received from server, Bytes sent

from client, Bytes received from server, Time Statistics,

Client processing time, Total execution time, Wait time on

server replies.

The output is as below:

4.1.3: Measurement of execution time using query

DECLARE @EndTime datetime

DECLARE @StartTime datetime

SELECT @StartTime=GETDATE()

 /* The Query 2 need paste here to measure the excution time*/

SELECT @EndTime=GETDATE()

--This will return execution time of your query

SELECTDATEDIFF(ms,@StartTime,@EndTime)AS [Duration in millisecs]

Output is as below: 60 rows are retrieved

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51233 160

5. RESULT ANALYSIS

5.1: Execution Time:

Following table represents the execution time in milli seconds different executions. The execution time is measured

before and after the rebuild operations:

 execution1 execution2 execution3

Execution Time before Rebuild(in milli sec) 18932 21787 27933

Execution Time after Rebuild(in milli sec) 696 699 690

5.2: Fragmentation percentage comparison:

 After rebuild and reorganize the fragmentation level also

reduced refer the table-4.3 and figure-4.1

It is observed that the fragmentation of different tables

whose page size is more, the fragmentation percentage is

reduced about to 0% (table name : smsAttendance_master,

the fragmentation of the non cluster index for date field is

reduced to 0.4632%)

From the tables 4.3 it is observed that after rebuild or

reorganize of indices the fragmentation still exist in the

tables: smsStudent, smsEmployee. The reason for the

fragmentation is the page size of the specific tables is less.

Hence there is no distinct improvement of fragmentation

of the specified tables.[6]

6. CONCLUSION

One of the most important functional requirements of a

database system is its ability to process queries in a timely

manner. This is particularly true for very large database

applications. There are different types of indices are there

like cluster index and non-cluster index. The performance

of the query decreases after couple of DML statements

like insert, update, delete which increases the

fragmentation. So in experiment it is observed that the

performance of the query decreases drastically due to the

fragmentation. Hence rebuild and reorganize have to be

performed periodically after identifying the

fragmentations. The rebuilt is necessary when the

fragmentation is more than 30% and reorganize is

necessary when the fragmentation is <30%. The rebuild

operations takes the database to offline mode where as the

reorganize operation reduces the fragmentation in online

mode operations. Thus, a great deal of research and

resources is spent on creating smarter, highly efficient

query optimization engines. The rebuild is simplest and

frequent used method for optimized query processing.

REFERENCES

[1] ―Performance Tuning in Microsoft sql Server DBMS‖ by Sapna
Dahiya, Pooja Ahlawat, IJCSMC, Vol. 4, Issue. 6, June 2015,

pg.381 – 386
[2] ―Increasing Database Performance using Indexes‖, by Cecilia

CIOLOCA, Mihai GEORGESCU, ROMANIA, Database Systems

Journal vol. II, Issue 2, 2011
[3] ―Introduction to Query Processing and Optimization‖ Michael L.

Rupley, Jr.Indiana University at South Bendmrupleyj@iusb.edu

[4] http://ecomputernotes.com/database-system/adv-database/
fragmentation

[5] https://msdn.microsoft.com/en-in/library/ms189858.aspx

[6] ―Introduction to Query Processing and Optimization, International
Journal of Advanced Research in Computer Science and Software

Engineering‖ Vol. III, Issue 7, July 2013,

0

5000

10000

15000

20000

25000

30000

execution1 execution2 execution3

Execution Time before
Rebuild(in milli sec)

Execution Time after
Rebuild(in milli sec)

mailto:mrupleyj@iusb.edu
https://msdn.microsoft.com/en-in/library/ms189858.aspx

