ISSN (Online) 2278-1021
|J A RCC E ISSN (Print) 2319 5940
.m International Journal of Advanced Research in Computer and Communication Engineering

1JARCCE ISO 3297:2007 Certified
Vol. 5, Issue 12, December 2016

Performance Testing and Monitoring SQL
Queries for Rebuild or Reorganize Operations

Mr. Sudhakar Panigrahy®, Mr. Pragnyaban Mishra?, Mr. Murali Krishna Senapaty®

1,23

Dept of CSE, Gandhi Institute of Engineering & Technology, Gunupur, Rayagada, India

Abstract: A database system must be able to respond to requests for information from the user—i.e. process queries.
Obtaining the desired information from a database system in a predictable and reliable fashion is Query Processing. To
extract these results in a timely manner is possible with the technique of Query Optimization. For effective query
processing the data must not be much fragmented. In this paper we focussed on the poor performance of query when
the date fragmentation percentage is more and we have analysed how the fragmentation can be reduced using rebuild
and re-organize techniques. In the last section, we have taken a sample data for query processing before rebuild and
after that to have a comparative analysis.

Keywords: Indexing, Fragmentation, rebuild, re-organize.

1. INTRODUCTION
1.1 Index: We can classify fragmentation into two types:
Index is used to speed up the query retrieval process. Types of Fragmentation

Index uses lookup table the search engine of the database e Internal Fragmentation: When records are stored
uses to improve the performance of select statement of non-consecutively inside the page, then it is called

SQL query. As index stores data in sorted order hence it is internal fragmentation. Internal fragmentation will
also useful in order by clause. However index reduces the occur if there is unused space between records in a
DML (Data Manipulation Language) operations (Insert, page. This fragmentation occurs sue to the process of
Update and Delete operations). Hence index is avoided in data modifications (INSERT, UPDATE, and DELETE
following situations: statements) that are made against the table many times
o If number of rows in table is less(less than 1000). and also to the indexes defined on the table. When the
e If the column not used in where clause of SQL modifications are not equally distributed among the
statement. rows of the table and indexes then the fullness of each
e The number of distinct values of index column is ~ page can vary. Due to these unused spaces it causes
less(Like the gender column contains M/F). poor cache utilization and more 1/O, which finally
e The column contains more number of NULL values. leads to poor query performance.
e If the column that is frequently updated. e External Fragmentation: When the extents of a table

are not physically stored contiguously on disk,
Use of indexes is one of the best ways to improve switching from one extent to another causes higher
performance of database application. The index uses the disk rotations, and this is called Extent Fragmentation.
data structure B-Tree for indexes. The searching operation ® Logical Fragmentation: Index pages also maintain a

is first as B Tree uses logarithmic time for look up, logical order of pages inside the extent. Every index
insertion and deletion. The correct use of index requires page is linked with previous and next page in the
careful analysis, benchmarking and testing. SQL query logical order of column data. However, because of
tuning is used to identify the useful of index[2]. Page Split, the pages turn into out-of-order pages. An

The performance of the query is very important when the out-of-order page is a page for which the next physical
database size if large so there exist so many techniques for ~ page allocated to the index is not the page pointed to
tuning the query by which the performance of the query by the next-page pointer in the current leaf page. This
can be improved.[1] is called Logical Fragmentation.

Now it is important to know, if we are looking for a

specific value how it retrieves other values. Index also Advantages of Fragmentation

stores pointer to the corresponding rows in the table. e Usage: Generally, applications work with views more
Hence it retrieves data as per specific column value used than entire relations. That is why, for data distribution,

where clause. it seems appropriate to work with subsets of relation as
the unit of distribution.

1.2 FRAGMENTATION: o Efficiency: Data is stored close to where it is most

Storing of data non-contiguously on a disk is called as frequently used. The data that is not needed by local

fragmentation. applications is not needed to store locally.

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51233 152



IJARCCE

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

m International Journal of Advanced Research in Computer and Communication Engineering

IJARCCE

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

o Parallelism: With the fragments as the unit of
distribution, a transaction can be divided into several
sub queries that operate on fragments. This allows
concurrency, thereby allowing transactions that can do
so safely to execute in parallel.

Disadvantages of the Fragmentation:

e Performance: The performance of global application
that requires data from several fragments located at
different sites may be slower.

o Integrity: Integrity control may be more difficult if
data and functional dependencies are fragmented and
located at different sites.

2. REORGANIZE AND REBUILD INDEXES

The Database Engine maintains indexes whenever insert,
update, or delete operations are made to the underlying
data. Over time these modifications causes the information
in the index to become scattered in the database.
Fragmentation exists when indexes have pages in which
the logical ordering, based on the key value, does not
match the physical ordering inside the data file. More
fragmented indexes can degrade query performance and
cause your application to respond slowly[5].

We can remedy index fragmentation by reorganizing or
rebuilding an index. For partitioned indexes built on a

partition scheme, you can use either of these methods on a
complete index or a single partition of an index.

2.1 Rebuild: Rebuilding an index drops and re-creates
the index. This removes fragmentation, reclaims disk
space by compacting the pages based on the specified or
existing fill factor setting, and then reorders the index
rows in contiguous pages. When ALL is specified, all
indexes on the table are dropped and rebuilt in a single
transaction.

2.2 Reorganize: Reorganizing an index uses minimal
system resources. It defragments the leaf level of clustered
and non-clustered indexes on tables and views by
physically reordering the leaf-level pages to match the
logical, left to right order of the leaf nodes. Reorganizing
also minimizes the index pages. The Compaction is also
based on the existing fill factor value.

3. EXPERIENTIAL SETUP

3.1 DETECTING FRAGMENTATION

The first step in deciding which defragmentation method
to use is to analyse the index to determine the degree of
fragmentation. By using the system
function sys.dm_db_index_physical_stats, we can detect
fragmentation in a specific index, all indexes on a table or
indexed view, all indexes in a database, or all indexes in
all databases [4].

Query-1: The following query is used to detect the fragmentation exist in all indices of specific database
SELECT OBJECT_NAME(OBJECT _ID), index_id,index_type_desc,index_level,avg_fragmentation_in_percent,avg_

page_space_used_in_percent,page_count

FROM sys.dm_db_index_physical_stats

(DB_ID(N'MySms'),

NULL, NULL, NULL , 'SAMPLED") ORDER BY avg_fragmentation_in_percent DESC

Output
Fragmentation Before rebuild:

e Microsoft SQL Server Management Studio ==

File Edit Wiew Query Debug Tools
S New Query | [y |y |2 W S | &
B3| Mysms - ¥ Becute p

Window  Community Help

v EEr s pREnI =2 E

MySms (sa (540

Object Explorer w I X || 30L0uend.sql - P 3ySms (sa (5)* SQLOuery 1.sql - - x
Connect~ 83 [EISELECT OBJECT INAME (OBJECT ID), index_id, index type desc,index_level, %
avy_tr: ion_in_percent,avy_page_space_used_in percent,page_count
= 3 Tables A FROM sys.dm_db_index_physical stats =
@ [ System Tables (DB_ID(N' l{ySMS“ ), NULL, NULL, NULL , 'SAMPLED'}
% = dbo.Proctor_Student_Details ORDER BY avg fragmentation in percent DESC o
% 1 dbo.Practor_Student_ Master < o 5
% = dbo.smsAttendance_Details
@ 1 dbosmshttendance_Edit Details £ Rosubs | [y essages
% 1 dbo.smsdttendance Edit Master {No column name] index_id  index_type_desc index_level  avg_fiagmentation_in_peicent: avg_page_space_used_in_percent  page_count ~
5 3 dbo.smsAttendance_Master 1 | smsStudent 1 CLUSTERED INDEX 0 965707227414 53,172090437361 2
% O dbosmsBranch 2 smsSublect Regotration_ Master 1 CLUSTERED INDEX ] 8333333333333 601412651 346676 6
5 I dbo.smsDPR_Master 3 smeEmployes 1 CLUSTERED INDEX 0 %0 56.4195700512903 5
# [ Columns 4 smeDPR_New_User 1 CLUSTERED INDEX o 20 £2.1324437855201 &
[ Keys 5 mohitendance_baster 1 CLUSTERED INDEX o 727757001153402 110371 83040524 657
& [ Constraints 5 smSelleave 1 CLUSTERED INDEX ] 6. 3
® [ Triggers =1 7 Proctor_Student_Master 1 CLUSTERED INDEX ] 66 GEEGRGEEERET 62, 280701754365 3
= [ Indexes 8 smsStudent *® NONCLUSTERED INDEX 0 £1.5309515384515 217250981961 95 12 =
ity pksmsDPR Master DPR_Cog 3 smehttendance Edit_Master 1 CLUSTERED INDEX [ [ 87 7835433654559 5
= L Statistics 10 smeStudent 5 NONCLUSTERED INDEX 0 50 99,5943468742278 14
. g :EZ;:zgig-g::’";"‘::'mm ||| 11 smExem Semester Maste 1 CLUSTERED INDEX ] 50 91.5087472201631 8
& = dhosmatdit St dttonconte 12 smoEwaminalion Matk_Master 1 CLUSTERED INDEX ] %34 1 15
& 3 dbosmsEmployee 13 smeStudent E NONCLUSTERED INDEX 0 36.36396363636364 91,7951 5630635 il
% 01 dbo.smsExam_Sernester Details 14 smeSend_Sms_Master 1 CLUSTERED INDEX o 9126213683 103
& 1 dbosmsEsam_Sermester Master 15 smohitendance_baster 12 NONCLUSTERED INDEX 0 0.632911392405063 99915554771 9002 15
% 1 dbousmsExamimation Mark_Details 16 smsDPA_Master 1 CLUSTERED INDEX ] 0.0919117647056823 98,9209167284408 1088
4 T dbo.smsExamination_iark_Master 17 smsProctor_CyclePlan Detalls 0 HEAP ] 0 94 8460956734865 I3
# =1 dbo.smsExamination_Schedule 18 smeEnamGubiect Regisiation... 1 CLUSTERED INDEX 0 i 12.960217448021 1
® O dbo.smsExamSubject_Registration_ 19 smeHolidape 0 HE4P [ 0 1.47022485791945 1
% = dbo.smsExamSubject_Registration_ || 20 smeEwamSubject Fegishaton.. 0 HEAP o 0 6254279713367 3
% 3 dbo.smsHolidays 21 smsStudeniRegistration 1 CLUSTERED INDEX ] 0 12, 7748049839357 1
@ O dbo.smsProblem _Category 22 smsDPRComment_Fiom Auth.. 0 HEAP ] 0 5 5645157647640 5
# 3 dbo.smsProctor_Cycle_Plan_Details 22 Superviser_Faculy Master 1 CLUSTERED INDEX [ 0 14,0674428500371 1
® O dbosmsSchedule_Master 24 smcEwamination Mark_Detale 0 HEAP [ [ 99.1522115147022 395
# I dbo.smsSend_Sms Master |25 meihisct Reristeation Netails ) HESP n 0 5 R TAT A5 11 >
< TS > (D Query executed successfully. PMSSQLEXPRESS (10,50 RTM) | 5 (543 | MySms | 00:00:00 38 raws
Output -~ I x
Ready Lnd Col 15 Ch15 INS
244 PM

Ee e B

= PEDB s

(Figure-3.1)

Copyright to IJARCCE

DOI 10.17148/IJARCCE.2016.51233

153


https://msdn.microsoft.com/en-in/library/ms188917.aspx

i -
IJARCCE SISSN (Prim) 2316 5640

International Journal of Advanced Research in Computer and Communication Engineering
IJARCCE

ISO 3297:2007 Certified
Vol. 5, Issue 12, December 2016

From the above output it is observed that the fragmentation exist in many indices of the database.

TABLE-3.1
Column Description
avg_fragmentation_in_percent  The percent of logical fragmentation (out-of-order pages in the index).
fragment_count The number of fragments (physically consecutive leaf pages) in the index.
avg_fragment_size_in_pages Average number of pages in one fragment in an index.

3.2 Constructing complex query:

For measuring the performance of the query we used following tables:
smsStudent(no. Of records 15000),

smsAttendance_Master(no. Of records 118023),
smsAttendance_Details(no. Of records 6504012),
Proctor_Student_Master(no. Of records 1723),
Proctor_Student_Details(no of records 65230),
smsEmployee(no.of records 792)

RN

From the above tables is has been seen that the larger tables are: smsAttendance_Master, smsAttendance_Details
Query-2: The query is used to find the attendance percentage of the students in specified date:

select smsStudent.vcRoll_No AS 'Roll No',smsStudent.vcStudent_Name as Name,smsStudent.vcStudent_Mobile_No
as 'Student Mobile No',

vcFathers_No as 'Fathers Mobile No',smsEmployee.vcEmp_Name as
'Proctor’,count(smsAttendance_Master.vcAttendance_No) as 'Tot Classes’,

SUM(intpresent) as Presnt,count(smsAttendance_Master.vcAttendance_No)-SUM(intpresent) as Absent ,
cast((cast(SUM(intPresent)*100 as decimal(18,2))/COUNT (smsAttendance_Master.vcAttendance_No))as
decimal(10,2)) as Atte_Per

from
smsStudent,smsAttendance_Master,smsAttendance_Details,Proctor_Student_Master,Proctor_Student_Details,smsEmp
loyee

where smsAttendance_Master.vcAttendance_No=smsAttendance_Details.vcAttendance_No and
smsAttendance_Details.vcRoll_No=smsStudent.vcRoll_No and
Proctor_Student_Master.vcProctor_Student_Code=Proctor_Student_Details.vcProctor_Student_Code and
Proctor_Student_Details.vcStudent_Roll_No=smsStudent.vcRoll_No and
Proctor_Student_Master.vcProctor Employee Code=smsEmployee.vcEmp_code and
smsStudent.vcBranch_Id='"CSE' AND smsStudent.intSemester=6 and vcSection="A" and
smsStudent.vcStatus="ACTIVE' AND

smsAttendance_Master.vcStatus="ACTIVE' and smsAttendance_Master.dtDtAttendance_Date>='12/13/2016
12:00:00 AM' and

smsAttendance_Master.dtDtAttendance_Date<='12/13/2016 12:00:00 AM'

group by smsStudent.vcRoll_No,smsStudent.vcStudent Name,smsStudent.vcStudent_Mobile_No,
vcFathers_No, smsEmployee.vcEmp_Name

having count(smsAttendance_Master.vcAttendance_No)-SUM (intpresent)>=1 order by smsStudent.vcRoll_No

Query-3: The query is used to rebuild all indices of the database.
use MySms;// MySms is name of the database
SET NOCOUNT ON;

DECLARE @abijectid int;

DECLARE @indexid int;

DECLARE @partitioncount bigint;
DECLARE @schemaname nvarchar(130);
DECLARE @abjectname nvarchar(130);
DECLARE @indexname nvarchar(130);
DECLARE @partitionnum bigint;
DECLARE @partitions bigint;

DECLARE @frag float;

DECLARE @command nvarchar(4000);

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51233 154



ISSN (Online) 2278-1021

IJ A RCC E ISSN (Print) 2319 5940
.m International Journal of Advanced Research in Computer and Communication Engineering
LJARCCE ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

-- Conditionally select tables and indexes from the sys.dm_db_index_physical_stats function
-- and convert object and index IDs to names.
SELECT
object_id AS objectid,
index_id AS indexid,
partition_number AS partitionnum,
avg_fragmentation_in_percent AS frag
INTO #work_to_do
FROM sys.dm_db_index_physical_stats (DB_ID(), NULL, NULL , NULL, 'LIMITED")
WHERE avg_fragmentation_in_percent > 10.0 AND index_id > 0;
-- Declare the cursor for the list of partitions to be processed.
DECLARE partitions CURSOR FOR SELECT * FROM #work_to_do;
-- Open the cursor.
OPEN partitions;
-- Loop through the partitions.
WHILE (1=1)
BEGIN;
FETCH NEXT
FROM partitions
INTO @objectid, @indexid, @partitionnum, @frag;
IF @@FETCH_STATUS < 0 BREAK;
SELECT @objectname = QUOTENAME (0.name), @schemaname = QUOTENAME(s.name)
FROM sys.objects AS o
JOIN sys.schemas as s ON s.schema_id = 0.schema_id
WHERE o.0bject_id = @objectid,;
SELECT @indexname = QUOTENAME (name)
FROM sys.indexes
WHERE object_id = @objectid AND index_id = @indexid;
SELECT @partitioncount = count (*)
FROM sys.partitions
WHERE object_id = @objectid AND index_id = @indexid;
-- 30 is an arbitrary decision point at which to switch between reorganizing and rebuilding.
IF @frag < 30.0
SET @command = N'ALTER INDEX ' + @indexname + N' ON ' + @schemaname + N'.' + @objectname + N'
REORGANIZE,
IF @frag >= 30.0
SET @command = N'ALTER INDEX ' + @indexname + N' ON ' + @schemaname + N'.' + @objectname + N'
REBUILD";
IF @partitioncount > 1
SET @command = @command + N' PARTITION="+ CAST(@partitionnum AS nvarchar(10));
EXEC (@command);
PRINT N'Executed: ' + @command;
END;

-- Close and deallocate the cursor.

CLOSE partitions;

DEALLOCATE partitions;

-- Drop the temporary table.

DROP TABLE #work_to_do;

GO

Output:

Executed: ALTER INDEX [PK__smsEmplo__ 99AAB30420C1E124] ON [dbo].[smsEmployee] REBUILD
Executed: ALTER INDEX [IX_smsStudent_Branch] ON [dbo].[smsStudent] REORGANIZE
Executed: ALTER INDEX [I1X_smsStudent_Semester] ON [dbo].[smsStudent] REORGANIZE
Executed: ALTER INDEX [IX_smsStudent_Section] ON [dbo].[smsStudent] REBUILD

(Note : All rows of the output are not shown here)

From the study [3] it is noticed that rebuild is not useful when the fragmentation is less than 30%. So the query is
designed to reorganize or rebuild as per the fragmentation percentage as below:

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51233 155



ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified
Vol. 5, Issue 12, December 2016

IJARCCE

avg_fragmentation_in_percent value
> 5% and < =30%
> 30%

TABLE-3.2

Corrective statement
ALTER INDEX REORGANIZE
ALTER INDEX REBUILD WITH (ONLINE = ON)*

Fragmentation after rebuild all indices (Execution of the Query-3)

TABLE-3.3
(No column name) index_ | index_type_desc index_ | avg_ avg_page_ page
id level fragmentation | space_used | count
_in_percent _in_percent

smsEmployee 1 CLUSTERED 0 66.66666667 94.0490981 | 3
INDEX

Proctor_Student_Details 7 NONCLUSTERED | 0 50 93.74845565 | 12
INDEX

smsStudent 36 NONCLUSTERED | 0 45.45454545 97.1258216 | 11
INDEX

smsStudent 35 NONCLUSTERED | 0 35.71428571 99.59494687 | 14
INDEX

smsStudent 37 NONCLUSTERED | 0 27.27272727 91.87951569 | 11
INDEX

smsSend_Sms_Master 1 CLUSTERED 0 4.301075269 98.38045466 | 93
INDEX

smsAttendance_Master 12 NONCLUSTERED | 0 0.625 99.41423277 | 160
INDEX

smsAttendance_Master 1 CLUSTERED 0 0.319488818 99.14720781 | 626
INDEX

smsDPR_Master 1 CLUSTERED 0 0.091911765 98.34676303 | 1088
INDEX

smsProctor_Cycle Plan 0 HEAP 0 0 94.84609587 | 76

_Details

smsExamSubject_ 1 CLUSTERED 0 0 12.96021745 | 1

Registration_Master INDEX

smsHolidays 0 HEAP 0 0 1.470224858 | 1

smsExamSubject_ 0 HEAP 0 0 62.54427971 | 3

Reqgistration_Details

smsStudentRegistration 1 CLUSTERED 0 0 13.24437855 | 1
INDEX

smsDPRComment_ 0 HEAP 0 0 5.564615765 | 5

From_Authorites

smsSetLeave 1 CLUSTERED 0 0 86.75150729 | 3
INDEX

Superviser_Faculty Master | 1 CLUSTERED 0 0 14.05979738 | 1
INDEX

smsSubject_ Registration 1 CLUSTERED 0 0 90.22424018 | 4

_Master INDEX

smsExamination_Mark 0 HEAP 0 0 99.15221151 | 395

_Details

smsSubject_ 0 HEAP 0 0 75.20610329 | 11

Registration_Details

smsExam_Semester_Master | 1 CLUSTERED 0 0 89.28836175 | 8
INDEX

smsAttendance_Details 0 HEAP 98.7805535 | 10100

smsBranch 1 CLUSTERED 9.340252039 | 1
INDEX

smsExam_Semester Details | 0 HEAP 0 0 95.30226093 | 68

Copyright to IJARCCE

DOI 10.17148/IJARCCE.2016.51233

156



ISSN (Online) 2278-1021

IJ A RCC E ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
IJARCCE

ISO 3297:2007 Certified
Vol. 5, Issue 12, December 2016

smsUploadedStudent 1 CLUSTERED 0 0 0.852483321 | 1
Imagedetails INDEX
smsUploadedStudent 1 CLUSTERED 0 0 0 0

Imagedetails INDEX
smsStudentRegistration 0 HEAP 0 0
Temp

94.19570052 | 40

Proctor_Student_Master 1 CLUSTERED 0 0 93.43958488 | 2
INDEX

sysdiagrams 1 CLUSTERED 0 0 0 0
INDEX

sysdiagrams 2 NONCLUSTERED | 0 0 0 0

INDEX
Proctor_Student Details 0 HEAP 0 0
smsSchedule_Master 1 CLUSTERED 0 0
INDEX

78.41057574 | 29
10.05683222 | 1

smsEdit_Student_
Attendance

CLUSTERED
INDEX

0 0

smsAttendance_Edit
Master

CLUSTERED
INDEX

0 88.36916234 | 5

gmsAttendance_Edit 0 HEAP 0 0 50.86278725 | 12
_Details
smsProblem_Category 1 CLUSTERED 0 0 1.890289103 | 1

INDEX
CLUSTERED 0 0
INDEX
smsExamination_Mark 1 CLUSTERED 0 0
_Master INDEX
smsDPR_New_User 1 CLUSTERED 0 0
INDEX
CLUSTERED 0 0
INDEX

smsExamination_Schedule | 1 8.549542871 | 1

95.34552755 | 15

77.6933531 | 4

smsStudent 1 97.80305164 | 191

4. PERFORMANCE MEASUREMENT OF REBUILD OR REORGANIZE OPERATION

Execution plan is as below

= Micresoft SQL Server Management Studio - |a
File Edit View Debug Tools Window Community Help
Qvewauey |0y | [ 5 H D o
1 X | Xlsqiplan| SQLQueryfisgl - P...SMySms (sa (S8)* | SQLQueryS.sql - P.uSMySms (sa (60)* | SQLQuenyd.sql - P...SMySms (sa (58)3* | SQLQueryd.sq - P...SySms (sa (53))* | SOLQuery2.sq] - P..SMySms (sa (S1))* | SQLQueryT.sgl - P...SMySms (sa (54" - x
= 1t Query cost (relative to the hateh): 100%

t smsStudent.voRoll No AS 'Roll No',swmsScudent.voStudent_Name as Name,swsStudent.voStudent_Mobile o as 'Student Mobile No', veFathers_No as 'Fathers HMobile No',swsEmployee.voEwp_Na

| Meaming Taden Linpact 95-3314+ CREATE NOMGLUSTERED INDEX [Mam of Fiseins Tnden. syomewe.a] G [dbo) - |owasttendane, Devaile]  |[renors Moy INCLUDE |[voaceendamce Hopameboesenel]
— —_ RE 2 3 -
3 = = 3 m 23 i 5
Strean Aggregate Hash Macch Nastaa Loop Ingex See MonClusterea)
Compuse Sealar Filver Conpuse scalar sors . -
pune See it e e (or ecara) coere CTrmer d0in) (Trmar Toin Ui i
os Cose: 03 com: 0 8
Hash Mat nd.
Use each row from the top inpu
and each row from the bottam nto
2 hash table, outputting all matching rows. @
= Hach 3 5 Hested loops =
(Tomncr Physical Operation Hash Match (Troer Joing
Cost: Logi an Inner Join Coses 04
37912
0
12.0906
1
1
12.590632 (56%9)
22.8181
10452.7
ue
0
0
12
Output List
[WySrms] ol ) weRall_Mo, (MySmsL{dbol,
[MySmsl.{dbal,
[dbol.
[MySms] ol
_No, [MySms].
nt, MySims)
FERIE W
i dbo].[sms/ttendance_Details] [vcRoll_No]=
Bl Proctor_Studert_Dtails] v & x
Readh [MySras][dbo] [srmsattendance_Details|veRoll_Ne
- a w7 328 PM
‘ & =il | Q H m H 5 ‘ F 8 s pismts



IJARCCE

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

LJARCCE 1SO 3297

:2007 Certified

Vol. 5, Issue 12, December 2016

4.1 Tools identified to measure the performance:

The following tools are used to trace the performance
result and necessary actions:

4.1.1: Estimated Execution Plan

4.1.2: Client Statistics

4.1.3: Measurement of execution time using query

®

File Edit View Debug Tools
AMewuery | [y | | H S & -
IL X | Xt.sqlplan| SQLQueryGisql - PuSivySms (sa (58}

Window Comrmunity Help

SQLQueryisg - P..SMySms (sa (60)" | SQLQuerydsq - P.nSMySms (sa (59

Microsoft SQL Server Management Studio

SQLQuery3.sg - PuuS MySms (sa (53"

4.1.1: Estimated Execution Plan:

It displays the execution plan, resources (execution time
and space) of the current query and also it necessary
actions require to improve the performance of the query.
Following is the output of the execution plan after rebuild
or reorganize operations (execution of the query-3)

SQLQueryZ.sgl - PuuSMySms (sa (S1)* | SQLQueryl.sal - PuuSMySms (sa (54)* - x

- Query 1: Query cost (relative to the batch): 100%

T select smsStudent.voRoll No A3 'Roll No',swsStudent.veStudent Nawe as Nawe, smsStudent.veitudent Mohile No as 'Student Mobile No', weFathers No as 'Fathers Mobile No',swsEwployee.veEmp Na.

~||Missing Index (Inpact 96.3214): CREATE NOWCLUSTERED INDEX [<Name of Missing Index, sysname,>] ON [dho] .([smsittendance Details] ([veRoll No]| INCLUDE ([veittendance No], [intPresent])
. - : ~
. il £ b ft] 3 4
Hash Match Hested Loops Hested Loops Hash Hatch Nested Loops Hash Mateh Hash Match Tadex St
(Imner Join) {Ioner Toin) (Taner Join) (Tmer Join) (Tamer Join) (Taner Joam) (Taner Toin) (susStudznt] -
Tost: Cost: 0% Cost: 0% Cost: 0% Cost: 0% Cost: 0 %
Hash Match
Use each row fromm the top input t build 3 hash table,
and each raw from the battom input to probe into the
hash table, outputting 3l matching rows. —
{susSeudens |
Physical Operation Hash Match
Logical Operation Inner loin
_ Actual Number of Rows 37912 _)ﬁ
. Estimated[f0 Cost 0 Index Sees (NonClustered)
Estimated CPU Cost 12,5506 tsusttudent] . (TX_susStudent_Section
Estimated Number of Executions 1 Cost: 0 %
Number of Executions 1
Estimated Operator Cost 12.090632 (56%) j
Estimated Subiree Cost 2881 .
. Hey Lookap {Clustersd)
Esl!maled Numh.ernl Rows 10527 [smsgcudent | . [pk st wdent] L
Estimated Row Size up oo =
Actual Rebinds 0
Actual Rewinds [}
Node ID 12 ﬂ
Tsble Scen
Output List {Proator_Student Deails]
[MySms].[dba] [smsStudent].vcRall_Na, MySms][dbol.
[smsStudent] e Student_Narme, [MySms],[dba].
[smsStudent]vcFathers Na, [MySms] [dbo]. 2]
[smsStudent] v Student_Mobile_No, [MySms] {dbol. Clustared Tndex fask (Clustezsd)
[smshttendance Detsils vcAttendance_No, (MySms]. [Practor, Scuders Hasoer] . (pkProckor.
[dbo].[smsfittendance_Details]intPresent, [MySms]. Cost: 0%
[dbo].smsErmployee]vcEmp_Name
Probe Residual r ﬁ‘
[MySras) [dbo] [smsbttendance_Details)[veRoll Naj=
[MySras] [dbo] [Practar_Student Detsils) e e e aeaia
v veStudent Roll_No] e T
EERIKS Hash Keys Probe u
Output [MySs].[dbo] [smséttendance_DetailslvcRoll No - 0x
Ready
H @ Y u BB 3:28PM
= = 5 12/15/2016
4 Microsoft SOL Server Management Studio =|a
File Edit Wiew Debug Tools Window Community Help
2 Newauery | 0 |0y |15 1 5| 4
I % | Xtsqlplan| SOLQueryGisql - PuSMySms (53 (5)° | SOLQueryS.sql - P SMySms (sa (60)" | SQLQuerydsql - PuuShySms (5a (59)° | SALAUer3:sg] - PuShySms s (53)* | SQLQuery2.sql - PuuShySms 2 (51)* | SQLAueryTsq] - PuShlySms (a (54)* -x

Query 1: Query sost [relative to the batch]: 100%

select awsStudent.veRoll No AS 'Roll No',swsStudent.veStudent Nawe as Nawe,smsStudent.veStudent _Mobile No as 'Student Mohile No', voFathers No as 'Fathers Mokile No',amsEwploves.voEn Ne

Hisging Index (Impact 96.3214): CREATE NONCLUSTERED INDEX [<Name of NMissing Index, sysname,>] ON [dbo) . [smsAttendance_Details] ([veRoll Nol) INCLUDE ([vecAttendance Nol, [intPresent])
~
Tndex &
[Ers——
&
Index Seek (NonClustered)
[susgtudent] . [1X_msStudert_Section]
Cos 0 4
#
= Eey Lookup (Clustersd)
[smsStudent ] . [pksmsStudent ]
Table Scan
Scan rows from a table 1
Table Scan
Physical Operation Table Scan [Proseox Soudans bevarisl
Lagical Operation Table Scan
Actual Number of Rows 1982748
Estimated 10 Cost 741868 La3g
Estimated CPU Cost 216118 |red Tndex Sesk (Clustersdy
Number of Executions [ flasten) - (pproctox B
Estimated Number of Executions 1 o
Estimated Operator Cost 9,39086 (41%)
Estimated Subtree Cost 959086
Estimated Number of Rows 1982750
Estimated Row Size T
Actual Rebinds 0
Actual Rewinds 0
1 Ordered False
Tante sean Node ID a
{susizcendance Decails
v Cost: 4l & Object
o[ [MySms] [dbol.[smshttendance Details] [
Output List
Output
P [MySms]dbo]. X
[smsstendance Details]vcAttendance_Ho, [MySms].
[dballsmséttendance_DetailslveRoll_No, [MySmsl.
Ready [dba) [smsattendance_Details intPresent
329PM

|

FE )

Copyright to IJARCCE

DOI 10.17148/IJARCCE.2016.51233

< PP onsams

158



ISSN (Online) 2278-1021
|JARCCE ISSN (Print) 2319 5940
m International Journal of Advanced Research in Computer and Communication Engineering

1JARCCE ISO 3297:2007 Certified
Vol. 5, Issue 12, December 2016

4.1.2: Client Statistics SELECT statements, Number of transactions , Network
The client statistics report displays the performance result Statistics, Number of server roundtrips, TDS packets sent
in different trials about Query Profile Statistics, Number from client, TDS packets received from server, Bytes sent
of INSERT, DELETE and UPDATE statements, Rows from client, Bytes received from server, Time Statistics,
affected by INSERT, DELETE, or UPDATE statements, Client processing time, Total execution time, Wait time on
Number of SELECT statements , Rows returned by server replies.

The output is as below:

7 Results | 03 Messages W) Client Statistics
Trial 4 Trial 3 Trial 2 Trial 1 Average
Clignt Execution Time 13:21:34 13:21:31 15:21:28 131617

Guery Profile Statistics

Murnber of INSERT, DELETE and UPDATE statements 0 = 0 = 0 = 0 = 0.0000
Rows affected by INSERT, DELETE, or UPDATE statem... 0 = 0 = 0 = 0 =+ 00000
Murnber of SELECT statements 1 = 1 = 1 = 1 =+ 1.0000
Rowg returned by SELECT statements 12 = 12 = 12 = 12 = 120000
Murnber of tranzactions 0 = 0 = 0 = 0 = 0.0000
Metwork Statistics
Mumber of zerver roundtrips 1 = 1 = 1 = 1 = 1.0000
TDS packets zent from client 1 =1 =1 =1 =+ 1.0000
TD5 packets received from server 1 = 1 = 1 = 1 = 1.0000
Butes sent from client maz2 = M2 = Mz = M = 3120000
Butes received from server 1468 = 1468 = 14E8 = 1468 = 1465.0000
Tirne Statistics
Client proceszing time ] = 0 = 0 = 0 =+ 00000
Total execution time E71 4 E&7 4 703 o123 = 85237500
W ait time on server replies E71 4 E&F 4 703 bo1234 = 8237500
4.1.3: Measurement of execution time using query
DECLARE @EndTime datetime
DECLARE @StartTime datetime
SELECT @StartTime=GETDATE()
/* The Query 2 need paste here to measure the excution time*/
SELECT @EndTime=GETDATE()
--This will return execution time of your query
SELECTDATEDIFF(ms,@StartTime,@EndTime)AS [Duration in millisecs]
Output is as below: 60 rows are retrieved
[ DECLARE @EndTime datetime
| DECLARE @StartTine datetime
< ]
= Results L3 Messages
Mame Student Mobie No Fathers Moble Mo Proctor TotClasses  Presnt  Absent  Atte Per
1 | DRANAMJAY KUMAR 7064102942 3409541403 MrRanjest Panigiahi 2 0 2 0.00
2 1 ANKIT KUMAR 9556633346 3305343176 Wrs. Gitanjal Mishia 2 I 2 0.0a
3 1 SURAJ KUMAR SANDHA 7205676433 777405365 Mrs. Gitanjal Mishia 2 0 2 0.00
L) 1 KUMAR SARTHAK, 8013335300 3437270658 Dr. Milambar Sethy 2 I 2 0.0a
5 1 NISHANT DUTTA 7533319448 3334807912 Mr. &miya Ku . Sahu 2 0 2 0.00
E 1 DIMMALS KUMAR SwiaMy 7208372382 9777978982 Mr. Amiya ku . Sahu 2 I 2 0.0a
7 1 NIRAMJAMN EFKA 9175536184 BE5E718109 Mr. &miya Ku . Sahu 2 0 2 0.00
8 1 SUBHASREE CHOUDHURY 8093366015 9437722832 Mr. Amiya Ku . Sahu 2 i 2 .00
3 14CSE07E D PRATEEK. DORA 3956111853,8895311827 94370994827 Mr Sudhakar Panigrahy 2 0 2 0.00

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51233 159



IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering

IJARCCE

ISO 3297:

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

2007 Certified

Vol. 5, Issue 12, December 2016

5. RESULT ANALYSIS

5.1: Execution Time:
Following table represents the execution time in milli seco
before and after the rebuild operations:

nds different executions. The execution time is measured

executionl execution?2 execution3
Execution Time before Rebuild(in milli sec) 18932 21787 27933
Execution Time after Rebuild(in milli sec) 696 699 690
30000
25000 ///
20000 — o
—&— Execution Time before
15000 Rebuild(in milli sec)
=fli— Execution Time after
10000 Rebuild(in milli sec)
5000
0 = : = : | .
executionl execution2 execution3

5.2: Fragmentation percentage comparison:

After rebuild and reorganize the fragmentation level also
reduced refer the table-4.3 and figure-4.1

It is observed that the fragmentation of different tables
whose page size is more, the fragmentation percentage is
reduced about to 0% (table name : smsAttendance_master,
the fragmentation of the non cluster index for date field is
reduced to 0.4632% )

From the tables 4.3 it is observed that after rebuild or
reorganize of indices the fragmentation still exist in the
tables: smsStudent, smsEmployee. The reason for the
fragmentation is the page size of the specific tables is less.
Hence there is no distinct improvement of fragmentation
of the specified tables.[6]

6. CONCLUSION

One of the most important functional requirements of a
database system is its ability to process queries in a timely
manner. This is particularly true for very large database
applications. There are different types of indices are there
like cluster index and non-cluster index. The performance
of the query decreases after couple of DML statements
like insert, update, delete which increases the
fragmentation. So in experiment it is observed that the
performance of the query decreases drastically due to the
fragmentation. Hence rebuild and reorganize have to be
performed periodically  after identifying  the
fragmentations. The rebuilt is necessary when the
fragmentation is more than 30% and reorganize is
necessary when the fragmentation is <30%. The rebuild

Copyright to IJARCCE DOI 10.17148/1

operations takes the database to offline mode where as the
reorganize operation reduces the fragmentation in online
mode operations. Thus, a great deal of research and
resources is spent on creating smarter, highly efficient
query optimization engines. The rebuild is simplest and
frequent used method for optimized query processing.

REFERENCES
[1] <“Performance Tuning in Microsoft sql Server DBMS” by Sapna
Dahiya, Pooja Ahlawat, JCSMC, Vol. 4, Issue. 6, June 2015,
pg.381 — 386
“Increasing Database Performance using Indexes”, by Cecilia
CIOLOCA, Mihai GEORGESCU, ROMANIA, Database Systems
Journal vol. 11, Issue 2, 2011
“Introduction to Query Processing and Optimization” Michael L.
Rupley, Jr.Indiana University at South Bendmrupleyj@iusb.edu
http://ecomputernotes.com/database-system/adv-database/
fragmentation
https://msdn.microsoft.com/en-in/library/ms189858.aspx
“Introduction to Query Processing and Optimization, International
Journal of Advanced Research in Computer Science and Software
Engineering” Vol. III, Issue 7, July 2013,

[2]

(31
(4]

[5]
(6]

JARCCE.2016.51233 160


mailto:mrupleyj@iusb.edu
https://msdn.microsoft.com/en-in/library/ms189858.aspx

